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Abstract. We ask the experts in global optimization if there is an efficient solution to an optimization 
problem in acceptance sampling: Here, one often has incomplete prior information about the quality 
of incoming lots. Given a cost model, a decision rule for the inspection of a lot may then be designed 
that minimizes the maximum loss compatible with the available information. The resulting minimax 
problem is sometimes hard to solve, as the loss functions may have several local maxima which vary in 
an “unpredictable” way with the parameters of the decision rule. 
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1. Introduction 

A classical field of quality control is acceptance sampling, it deals mainly with the 
following problem: Given an “inspection lot” of items of the same product, one 
has to decide whether to accept or reject the lot on the basis of a random sample. 

A good decision rule has to find some balance between the cost of wrong 
decisions and the cost of gaining more information about the lot. Let us assume 
that the quality of the product is judged by a single characteristic 5, which is not a 
constant but a random variable with a probability distribution that depends on 
some parameter x. When a lot is inspected, the actual value of x is unknown; let 
X be the space of possible values of x. A conservative approach is to choose a 
strategy that minimizes the maximum value of the expected loss, where the 
maximum is taken over X. 

Frequently such a minimax strategy is criticized because it protects against 
unlikely situations. If x itself varies from lot to lot according to a probability 
distribution IZ-, and Z- is known, a “Bayes strategy” may be used that minimizes 
the integral of the loss with respect to T. 

Whereas the minimax strategy is usually too pessimistic, this Bayes strategy 
may be too optimistic. It seems more realistic to assume that it is only known that 
QT belongs to a certain set II of probability measures on X. For instance, 
Krumbholz (1982) and v. Collani (1986) consider the set of all probability 
measures that put mass of (at least) y to a certain area of X. 

Given “incomplete information” II, a strategy is appropriate that minimizes the 
maximum average loss, where the maximum is taken over all T E II. Using 
Choquet theory, maximization over II may in certain cases be reduced to a 
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maximization problem in several real variables. But the corresponding minimax 
problem may still be hard to solve, especially in realistic situations. The reason is, 
that the goal function often has several local maxima that vary in a complicated 
way with the sampling strategy. 

In the following, a collection of such problems will be presented, coming from a 
particular stochastic model of acceptance sampling which is described in the 
appendix. The question is: Is there an efficient numerical algorithm which solves 
as many of these problems as possible ? Applying such an algorithm should 
frequently help to reduce costs of acceptance sampling considerably. 

2. The Regret Function 

A loss function which is basic for the optimization problems is presented in this 
section; the details of the model may be found in the appendix. 

The decision rules considered here will be indexed by a pair (n, c) E N x R: a 
sample of size 12 is taken from the lot, and a particular test statistic t, is calculated. 
The lot is accepted iff t, does not exceed the acceptance number c. Given ~1, t, is 
assumed to be fixed, so (n, c) completely characterizes the decision rule. The loss 
is then a random variable, depending on the decision. 

Let x E R be the parameter of the stochastic model and let the fraction p of 
defective items be related to x according to p = CD(x), where @ denotes the 
cumulative distribution function of the standard normal distribution defined by 

Q(x) = (2~)~” jIm exp(-tZ/2) dt . 

A variety of linear cost models may be reduced to a normalized version that 
depends only on two parameters, a “break even quality” p. E IO, l[ and the 
relative cost 4 > 0 of inspecting one item (see appendix). Let x,,: = a’-‘( p,,). The 
expected value of the loss, when the lot is inspected by (n, c), depends on the 
model parameter x and is given by 

R(x; n, c) = nq + 
i 

(@a(x) - w%)Pt~(c - 4) 7 ifxZ=xx, 
(@(x0) - @(x))(l - @(VE(c - x))) , if x < x0 . 

Given (n, c), the function R(. ; IZ, c): R-+ [0, l] is called a “regret function”. 
Obviously, R(x,; IZ, c) = nq = lim,,_, R(x; n, c) = lim,,, R(x; n, c) and 
R(x; n, c)>nq for x#x,. Basler (1967/68) has proved that R(*; IZ, c) is strictly 
unimodal on the left and on the right of x,; the maximum value of R(*; n, c) in 
]-a, xO[ (1x0, a[) will b e d enoted by R,(n, c) (R,(n, c)). Finally, let R,(n, c): = 
max{R,(n, c), R,(Y~, c)}, the maximum value of the regret function. The graph of 
the regret function for p. = 0.05, q = 10e4 and (n, c) = (20, -1.6) is shown in 
Figure 1. 
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A FIRST MINIMAX PROBLEM 

Let (no, c,,) be defined by 

The decision rule (n,, c,,) minimizes the maximum loss; it is appropriate, if 
nothing is known about x in advance. 

Basler (1967/68) proposes a solution which uses the fact that, for a fixed n, 
R,(n, c) is continuous and strictly antitonic and R,(n, c) is continuous and strictly 
isotonic in c. So for every y1 E N there is exactly one c, with 

it minimizes R,(n, c). Finally, (n,, co) may be found by minimizing R,(n, c,,). 
For example, let p0 = 0.05 and 4 = 10P4. Then x0 = -1.645, (n,, co) = 

(20, -1.668) and R,(n,,, co) = 0.0059. 
Although calculating (no, cO) in this way can be done very quickly, it would be 

advantageous to have a more efficient algorithm. 

3. Prior Information Given by Conditions on Generalized Moments 

In the following, R will always be endowed with the Bore1 o-algebra. “Measur- 
able” means Borel-measurable. 

Let us assume that the model parameter varies from lot to lot according to a 
probability distribution rr, then 

r(?T; II, c): = 
I 

iw R(x; n, c)r(dX) 

is called the “Bayes risk” of (n, c), given rr. It is the expected value of the loss. 
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Let I denote the set of all probability measures on [w and consider prior 
information II c l7 as discussed in the introduction. Then it is natural to choose a 
decision rule (n n, cn) that satisfies 

sup r(n-; n,, cn) = $2 sup r(5-; 12, c) . (1) WEll 2 TEII 
In the following, we shall assume that II is given by a set of k “generalized 

moment conditions”, i.e., for each i = 1, . . . , k there exists a measurable function 
h on [w and a real number ci E [w such that 

II = {r E I: fi is r-integrable and [w h dm 2 ci , I 
i=l,...,k}. 

REMARK. Replacing f;: by -J; also allows us to treat constraints of the form 
J, h dr < ci and ci 6 s, A dn s di, ci s di . 

Winkler (1982; 1988) proves that for II given as above, the problem of maximiz- 
ing the integral of a real function with respect to rr, rr E II, reduces to a 
maximization problem in rW’, I c 2k + 2: Clearly, II is convex; Winkler proves that 
the set of its extreme points is a subset of II,, defined by 

II,:= ?TE”:?T=~ tic?,., 1 i=l L 
tj>O, zt,=l,x@Q, lsm<k+l, 

the vectors (1, fl (xi), . . . , fk(xi)) , 1 s i d m are linearly independent . 
> 

Here 6, denotes the “Dirac measure” which puts mass 1 to x E [w. 
Given a function g : [w--+ [w, integrable for every n E lI, Winkler then proves 

that 

Application of Winkler’s results shows, that supTEn r(r; n, c) is the solution to 
the following problem: 

k+l 

M,a”,‘Fze C tjR(xj; n, C) 
I’ I j=1 

subjectto tj>O, lsjsk+l 
k+l 

c tj=l, 
j=l 

k+l 

2 tj&(xj)aci, lsisk. 
,=l 

Simplifications may be possible because of linear dependency. 

EXAMPLE3.1. Givena~RandO<y<l,letk=l,c,:=yandflbedefined 
by fi(x) = 1, if x < a, and fi(x) = 0 otherwise. The II corresponds to the inequality 
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W Sa)Sy. (2) 

The corresponding minimax problem may still be solved by using elementary 
methods, see Krumbholz and Schroder (1987). With the notation 

&(a; n, c) : =ry22 R(x; n, c) 

it holds true that 

sup r(rr; n, c) = ymZ(a; n, c) + (1 - y)R,(n, c) , 
7TErI 

an expression which is easy to evaluate. Given ~1, this supremum is continuous 
and quasiconvex in c (Seidel, 1990b), so minimization in c is easy. 

Let R,: = sup,,n r(n; n,, cn). For the parameters p. = 0.05, 4 = lop4 and y = 
0.9, we obtained for instance the following decision rules: 

a = Wl(O.03) : (n,, cn) = (16, -1.43) R, = 0.00369 

a = W’(O.05) : (n n, cn) = (14, -1.405) R, = 0.00393. 

Again, an efficient method to solve the minimax problem is of interest, although 
the range of application of 3.1 is limited. The reason is, that one does not usually 
observe x directly, but an estimator of x with a different probability distribution, 
so the parameters of (2) are sometimes not easy to estimate from past inspections 
(Seidel, 1990a). A way out of this problem is to replace x in (2) by an observable 
estimator; this will be done in the next example. 

EXAMPLE 3.2. Usually x is estimated by the mean value XI of a sample of size 1. 
In Seidel (1990a) it is shown that the information 

P(X, G a) 3 y (3) 

can be described by a generalized moment condition with k = 1, fi(x) = Q(-\T(a - 
x)) and c1 = y. The parameters of (3) can easily be estimated from past inspec- 
tions. To obtain typical values, let p,, = 0.05 and 9 = 10m4 and assume that a series 
of lots has been inspected by the minimax strategy (IZ,,, c,,) = (20, - 1.668). We 
can assume without loss of generality that the test statistic is XI with I = no = 20 
(see appendix). Let a = c,, = -1.668, then y may be estimated by the fraction of 
accepted lots (possibly with a correction that protects against estimation errors). 
A reasonable value would be y = 0.9. 

In order to consider (3), we have to calculate 

M:=t~;zRtR(x;n,c)+(l-t)R(y;n,c) 
1 I 

subject to 

(ii) tQ(ti(a - x)) + (1 - t)*(ti(a - y)) 2 y . 
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Because of the symmetry in x and y, we may choose x G y. Obviously, 

@(ti(u - x))( L)y ex( &z(W’(r))it/t = : 2. 

If y G .z, then (ii) is satisfied for any t E [0, 11. 
If (x, y) E A : = {(x, y) : x G z < y} then (ii) is satisfied for any t E [t,,, , 11, t,,, 
being defined as t,,, . . =( y - Q(ti(ff - y))) /((a(ti(a - x)) - @(x4(a - y))) . 
If R(.; iz, c) takes its global maximum at some point less or equal to z, then 
M = R,(n, c). 

Now assume that R(x; ~1, c) < R,(n, c) for all x d z. In this case, 

holds, where F(x, y) is defined by 

F(& y): =t,yafl @(x; n, c) - J-qy; n, cl) + R(y; n, c> . . . 

Obviously, 

fix, Y> = 

1 
R(x; n, c) 7 if R(x; ~1, c) 3 ( y; ~1, c) 
t,,,(R(x; IZ, c) - R(y; IZ, c)) + R(y; 12, c) , otherwise. 

So the maximization problem reduces to an optimization problem in two real 
variables with simple constraints. 
Choosing the parameters as in the beginning of this example, we obtained the 
decision rule (n n, C”) = (13, -1.49) t ogether with the corresponding maximum 
loss M = 0.00269. Figures 2-4 show typical surfaces of the goal function F (note 
that z = -1.955). 

EXAMPLE 3.3. Let the i-th moment of r be defined by fn x’n(dx). The 
requirement, that the i-th moment of n lies within a certain closed real interval Ii, 
i=l,..., k, is a (classical) moment condition: in fact, generalized moment 

In,cl = (13,-1.4901 

Fig. 2. 
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Fig. 3. 

.005 (n,cl - (20,- 

.004 

1.6681 

Fig. 4. 

conditions are generalizations of it. For an estimator of moments of TT, even if x is 
not observable, see Seidel (1990a). 

In most applications, k will be less or equal to 3. 
Even if lower and upper bounds for the moments are known, linear dependency 
yields that the corresponding maximization problem is 

k+l 

M;xi$r@ 
I‘ / 

,z tjR(xj ; n2, C) 

subjectto tj~O,l~j<k+l 
k+l 

c tj=l, 
j=l 

k+l 

c t,x; E Ii , 1~ i =S k . 
j=l 
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Appendix: The Details of the Model 

The stochastic model presented here can be found in nearly every textbook of 
acceptance sampling; for a version that also contains the cost model, see Stange 
(1964) or Basler (1967/68). 

Assume that the quality of a certain product is measured by a one-dimensional 
quality characteristic ,$ and that an item is acceptable iff 5 < U, an upper 
specification limit. Assume further that 5 is normally distributed with known 
variance V* and unknown expectation p. Then 

is the fraction of defective items, it is bijectively related to p,. 
In order to inspect a lot, a random sample of size IZ is taken and the sample 

mean X, is calculated. The lot is accepted iff the test statistic t, = (X, - U) /a does 
not exceed the acceptance limit c. The pair (n, c) completely characterizes the 
decision rule. The probability of accepting a lot of quality p is 

wp; ,n, c>: =yk G c) = qvqc - Q-‘(p))) . 

Let us adopt the linear cost model introduced by Stange (1964), transformed by 
subtraction of the “unavoidable loss” and a suitable normalization: Given a 
“break even quality” p,, ~10, l[ and relative costs q > 0 of inspecting one item, 
the loss when a lot of quality p is accepted is 

L,(p,n):=nq+max(p-p,,O), 

whereas the loss when the lot is rejected is 

L,( p, tz): =nq + max{p, - p, 0) . 

The average loss per lot is 

R(Pi n, c> = UP, n)Tp; n, cl + -q(p, n)(l- wp; n, c)) 

= nq + i 
(P - Po)@P(fi(C - Q-‘(P))) f if pap0 
(p. - p)(l - Ca(v%(c - F’(p)))) , if p <p. . 

The advantage of this representation of R is its clearness. For statistical 
purposes, a representation in terms of ,u is better: Given a distribution v of p, the 
distribution of the observable quantity X, is the convolution on 7~ and a (known) 
normal distribution with zero expectation and variance a’irz. This simple form 
makes parameters of 7~ easy to estimate. 

Finally, using the transformation x = (Al. - U)lu, we may without loss of 
generality assume that U = 0 and cr = 1 holds. Writing p = a(x) (x = W’(p)), we 
obtain the regret function of Section 2. 
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